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1 3He as a Prototypical Fermi Liquid and "Ex-

otic" Superconductor

4He is a well-know Bosonic atom that undergoes a super�uid transition at about
2.2 K in to a Bose-Einstein-condensate-like state. It's small mass and lack of
chemistry makes it ideal for showing Bosonic quantum �uid properties.
3He on the other hand has one un-paired neutron in the nucleus and a net
spin-1/2 nucleus, making it a Fermion. It is even lighter than 4He, making for
even more interesting quantum e�ects. At low temperatures it condenses into a
�uid which show prototypical Landau Fermi Liquid properties. Eventually, at
about 2.8 mK, it makes a transition in to a super�uid state that resembles BCS
superconductivity, although without the electrical charge.
Our objective is to review the Fermi liquid properties and then discuss the
super�uid state, making contact with BCS theory whenever possible.

2 The Landau Fermi Liquid Theory of 3He

At low temperatures (3 to 100 mK) 3He is a degenerate Fermi liquid. The Fermi

energy EF = ~2

2m

(
3π2N
V

)2/3
is equal to just 0.5 meV, as opposed to about 10

eV in good metals. The corresponding Fermi temperature is just 4.9 K, and the
Fermi wavenumber is 0.78 −1.

The heat capacity above Tc is observed to be linear in temperature, just
like the electronic heat capacity in metals, but with a slope 3 times bigger than

theory, C =
π2k2BNT

2EF
.

The magnetic properties are dominated by the un-paired nuclear spin, which
has a moment µN = 5.4× 10−4µB , where µB is the Bohr magneton. There is a
temperature-independent paramagnetic susceptibility at temperatures below 1
K, analogous to Pauli paramagnetism for the electron gas in a metal.
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Landau devleoped a version of Fermi liquid theory in 1956 to explain the
low-temperature properties of 3He. He started with the non-interacting gas
and treated the interactions as a perturbation. He treated all particles as de-

localized, and used momentum eigenstates, ψ ∼ 1√
V
e−i
−→
k ·−→r χ similar to BCS.

After turning on the interactions it is assumed that there is a 1:1 correspondence
between the states of the system, and that the interactions simply change the
energies of these states. By adiabatic continuation, the wavefunctions smoothly
evolve as the interactions are turned on. The Hamiltonian has the form,

H =
∑N
i=1−

~2

2m 5
2
i +λ

2

∑
i 6=j V (−→r i −−→r j). Here λ is tuned from 0 (no interac-

tions) to 1 (full interactions) adiabatically. It is assumed that the atoms interact
with each other purely by means of two-body interactions.

The interactions between particles can be written in terms of a small number
of parameters as follows. Write the interaction energy as,

Eint = f1(
−→
k ,
−→
k ′) + f2(

−→
k ,
−→
k ′)
−→
S ·
−→
S ′. The �rst term depends only on the mo-

mentum of the atoms, which is typically very close to kF . The second term is
the spin-dependent part, which depends on the vector dot product of the two

spins. Using the angle Θ between the directions
−→
k and

−→
k ′, Landau de�ned his

dimensionless parameters F and G as follows,
F (Θ) = N(EF )f1(Θ) =

∑∞
n=0 FnPn(cos(Θ)) = F0 + F1 cos Θ + ..., and

G(Θ) = N(EF )f2(Θ) =
∑∞
n=0GnPn(cos(Θ)) = G0 +G1 cos Θ + ...,

where N(EF ) is the density of states at the Fermi energy and one has expanded
in a set of Legendre polynomials over the spherical Fermi surface. It turns out
that most of the normal state physical properties can be understood in terms of
just F0, F1 and G0. For example, it is found that the mass of the quasiparticle
is enhanced as m∗3 = m3(1 + 1

3F1), which turns out to be about a factor of 3.
This explains the enhanced slope of the heat capacity vs. temperature. It is also

found that the magnetic susceptibility is enhanced as χ =
m∗3
m3

χideal

1+ 1
4G0

because

G0 < 0.

The Landau parameters for 3He as a function of pressure are,

Pressure(bar)
0 15 30

F0 10 46 82
F1 6 11 14.6
G0 −2.69 −2.92 −2.95

Note that the solid phase sets in just above a pressure of 30 bar. Note that the
spin-dependent terms are very weakly dependent on pressure.

3 Super�uid Properties of 3He

3He has three distinct super�uid phases, A, B and A1. In zero magnetic �eld
it will condense in to either the A or B phase, depending on the pressure. With
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increasing �eld the B phase is reduced and the A phase takes over. The B
phase supports persistent angular momentum states while the A phase does
not. There is a jump in speci�c heat upon going from the normal phase to the
A phase in zero �eld, reminiscent of the BCS transition. In non-zero �eld there
are two second order phase transitions as the system goes from the normal phase
to the A1 phase to the A phase. The transition from A to B phase is �rst order,
with latent heat and hysterisis.

The short-range Lennard-Jones (1/r12) repulsion is stronger than that in
electron-electron interactions, such that the spin-singlet s-wave pairing channel
is suppressed. The l = 1 angular momentum pairing state with spin-triplet
pairing is favored. The large paramagnetic susceptibility of the 3He atoms
favors the S=1 pairing. For the pair, the angular momentum vector and the spin
vector can, in general, point in di�erent directions, making for many possible
pairing states.

4 Pairing in 3He

Leggett found that the pairing interaction between 3He atoms can be written
as,

Vk,k′ ≈ 1
N(EF )

G0

1+ 1
4G0

−→
S ·
−→
S ′. We saw above that G0 ≈ −3, hence the pairing

interaction favors ferromagnetic alignment of the atom nuclear spins.

The pairing interaction is now more complicated because we have to keep
more careful track of the spin,
Hint =

∑
k,k′;αβγδ Vαβγδ(k, k

′)c+k′,αc
+
−k′,βc−k,γck,δ. This is a generalization of

the BCS pairing Hamiltonian. It is again assumed that Cooper pairs have zero
net momentum in the ground state.

One can de�ne a BCS-like order parameter as follows,
Fαβ(k) = 〈c−k,αck,β〉

=

(
〈c−k,↑ck,↑〉 〈c−k,↑ck,↓〉
〈c−k,↓ck,↑〉 〈c−k,↓ck,↓〉

)
giving pairing amplitude in 4 di�erent channels.

The BCS gap equation is now,
∆αβ(k) =

∑
k′,γδ(k, k

′)Vαβγδ(k, k
′)〈c−k′,γck′,δ〉.

The �nal gap equation can be written as,(
∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
= i

(
∆kI2×2 +

−→
d (k) · −→σ

)
σy, where −→σ is the vector of

Pauli spin matrices and
−→
d (k) is a vector order parameter for the spin triplet

pairing state.

The quasiparticle excitation spectrum can be written as,
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Ek =

√
(εk − µ)2 + |

−→
d (k)|2, so

−→
d (k) acts like the BCS gap in determining the

excitation spectrum. This has important rami�cations for persistent angular
momentum.

The two most important pairing states in supe�uid 3He are,
1) The Anderson-Brinkman-Morel (ABM) or A-phase. In this case, the order
parameter has the form,
−→
d (k) = (

√
3
4π sin θk(cosφk + sinφk), 0, 0), where the angles are the traditional

polar angles on the spherical Fermi surface. In this case |
−→
d (k)| ∼ sin θk and

the gap function goes to zero at the north and south poles of the Fermi sur-
face (point nodes). The order parameter points in the x-direction all over the
Fermi sphere. Due to the point nodes, many properties show power-law-in-
temperature behavior. There is no persistent angular momentum in the A-phase
due to the existence of excitations at arbitrarily small energies near the nodes.
The wavefunction is made up of the Sz = ±1 components of the spin singlet.
The A1 phase (in the presence of a magnetic �eld) favors one of these two Sz
states.

Why does the A-phase of super�uid 3He not support a persistent current?
For example a d-wave superconductor has nodes in the energy gap but it still
supports quantized vortices and persistent currents. Also super�uid 4He sup-
ports persistent currents. Why don't we have this also for the A-phase? The
answer is that s-wave and d-wave superconductors, along with 4He, are all de-
scribed by a complex order parameter of the form |ψ|eiφ. As such one can derive
�uxoid and circulating current quantization conditions by demanding that the
macroscopic quantum wavefunction be single valued. This puts a quantization
constraint on the phase winding number. In 3He A-phase and in p-wave (or
f-wave) superconductors the order parameter is a vector and is not simply con-
strained as in the complex order parameter case. In fact, these systems are
much richer and can support a variety of exotic topological defects that are far
more interesting than vortices!

2) The Balain-Werthamer (BW) or B-phase. In this case, the order param-
eter has the form,
−→
d (k) =

√
3
4π (sin θk cosφk, sin θk sinφk, cos θk). In this case the order parameter

is pointed radially outward on the Fermi surface, and it has a non-zero magni-
tude everywhere. The system is fully gapped and shows exponentially activated
properties at low temperature. The wavefunction is made up of the Sz = 0 part
of the spin-triplet wavefunction.
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